Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Low-rank matrix recovery with non-quadratic loss: projected gradient method and regularity projection oracle (2008.13777v2)

Published 31 Aug 2020 in stat.ML, cs.LG, math.OC, math.ST, and stat.TH

Abstract: Existing results for low-rank matrix recovery largely focus on quadratic loss, which enjoys favorable properties such as restricted strong convexity/smoothness (RSC/RSM) and well conditioning over all low rank matrices. However, many interesting problems involve more general, non-quadratic losses, which do not satisfy such properties. For these problems, standard nonconvex approaches such as rank-constrained projected gradient descent (a.k.a. iterative hard thresholding) and Burer-Monteiro factorization could have poor empirical performance, and there is no satisfactory theory guaranteeing global and fast convergence for these algorithms. In this paper, we show that a critical component in provable low-rank recovery with non-quadratic loss is a regularity projection oracle. This oracle restricts iterates to low-rank matrices within an appropriate bounded set, over which the loss function is well behaved and satisfies a set of approximate RSC/RSM conditions. Accordingly, we analyze an (averaged) projected gradient method equipped with such an oracle, and prove that it converges globally and linearly. Our results apply to a wide range of non-quadratic low-rank estimation problems including one bit matrix sensing/completion, individualized rank aggregation, and more broadly generalized linear models with rank constraints.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.