Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Estimating Rank-One Spikes from Heavy-Tailed Noise via Self-Avoiding Walks (2008.13735v1)

Published 31 Aug 2020 in cs.DS, math.ST, stat.ML, and stat.TH

Abstract: We study symmetric spiked matrix models with respect to a general class of noise distributions. Given a rank-1 deformation of a random noise matrix, whose entries are independently distributed with zero mean and unit variance, the goal is to estimate the rank-1 part. For the case of Gaussian noise, the top eigenvector of the given matrix is a widely-studied estimator known to achieve optimal statistical guarantees, e.g., in the sense of the celebrated BBP phase transition. However, this estimator can fail completely for heavy-tailed noise. In this work, we exhibit an estimator that works for heavy-tailed noise up to the BBP threshold that is optimal even for Gaussian noise. We give a non-asymptotic analysis of our estimator which relies only on the variance of each entry remaining constant as the size of the matrix grows: higher moments may grow arbitrarily fast or even fail to exist. Previously, it was only known how to achieve these guarantees if higher-order moments of the noises are bounded by a constant independent of the size of the matrix. Our estimator can be evaluated in polynomial time by counting self-avoiding walks via a color -coding technique. Moreover, we extend our estimator to spiked tensor models and establish analogous results.

Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.