Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 225 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Data-driven Outer-Loop Control Using Deep Reinforcement Learning for Trajectory Tracking (2008.13732v1)

Published 31 Aug 2020 in eess.SY and cs.SY

Abstract: Reference tracking systems involve a plant that is stabilized by a local feedback controller and a command center that indicates the reference set-point the plant should follow. Typically, these systems are subject to limitations such as disturbances, systems delays, constraints, uncertainties, underperforming controllers, and unmodeled parameters that do not allow them to achieve the desired performance. In situations where it is not possible to redesign the inner-loop system, it is usual to incorporate an outer-loop control that instructs the system to follow a modified reference path such that the resultant path is close to the ideal one. Typically, strategies to design the outer-loop control need to know a model of the system, which can be an unfeasible task. In this paper, we propose a framework based on deep reinforcement learning that can learn a policy to generate a modified reference that improves the system's performance in a non-invasive and model-free fashion. To illustrate the effectiveness of our approach, we present two challenging cases in engineering: a flight control with a pilot model that includes human reaction delays, and a mean-field control problem for a massive number of space-heating devices. The proposed strategy successfully designs a reference signal that works even in situations that were not seen during the learning process.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.