Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 153 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

COVID-19 Kaggle Literature Organization (2008.13542v3)

Published 4 Aug 2020 in cs.IR, cs.DL, and cs.LG

Abstract: The world has faced the devastating outbreak of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), or COVID-19, in 2020. Research in the subject matter was fast-tracked to such a point that scientists were struggling to keep up with new findings. With this increase in the scientific literature, there arose a need for organizing those documents. We describe an approach to organize and visualize the scientific literature on or related to COVID-19 using machine learning techniques so that papers on similar topics are grouped together. By doing so, the navigation of topics and related papers is simplified. We implemented this approach using the widely recognized CORD-19 dataset to present a publicly available proof of concept.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: