Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Discovering Bilingual Lexicons in Polyglot Word Embeddings (2008.13347v1)

Published 31 Aug 2020 in cs.CL, cs.CY, and cs.LG

Abstract: Bilingual lexicons and phrase tables are critical resources for modern Machine Translation systems. Although recent results show that without any seed lexicon or parallel data, highly accurate bilingual lexicons can be learned using unsupervised methods, such methods rely on the existence of large, clean monolingual corpora. In this work, we utilize a single Skip-gram model trained on a multilingual corpus yielding polyglot word embeddings, and present a novel finding that a surprisingly simple constrained nearest-neighbor sampling technique in this embedding space can retrieve bilingual lexicons, even in harsh social media data sets predominantly written in English and Romanized Hindi and often exhibiting code switching. Our method does not require monolingual corpora, seed lexicons, or any other such resources. Additionally, across three European language pairs, we observe that polyglot word embeddings indeed learn a rich semantic representation of words and substantial bilingual lexicons can be retrieved using our constrained nearest neighbor sampling. We investigate potential reasons and downstream applications in settings spanning both clean texts and noisy social media data sets, and in both resource-rich and under-resourced language pairs.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.