Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Performance portability through machine learning guided kernel selection in SYCL libraries (2008.13145v1)

Published 30 Aug 2020 in cs.PF, cs.DC, and cs.LG

Abstract: Automatically tuning parallel compute kernels allows libraries and frameworks to achieve performance on a wide range of hardware, however these techniques are typically focused on finding optimal kernel parameters for particular input sizes and parameters. General purpose compute libraries must be able to cater to all inputs and parameters provided by a user, and so these techniques are of limited use. Additionally, parallel programming frameworks such as SYCL require that the kernels be deployed in a binary format embedded within the library. As such it is impractical to deploy a large number of possible kernel configurations without inflating the library size. Machine learning methods can be used to mitigate against both of these problems and provide performance for general purpose routines with a limited number of kernel configurations. We show that unsupervised clustering methods can be used to select a subset of the possible kernels that should be deployed and that simple classification methods can be trained to select from these kernels at runtime to give good performance. As these techniques are fully automated, relying only on benchmark data, the tuning process for new hardware or problems does not require any developer effort or expertise.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. John Lawson (6 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.