Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

The Double Exponential Runtime is Tight for 2-Stage Stochastic ILPs (2008.12928v3)

Published 29 Aug 2020 in cs.CC and cs.DM

Abstract: We consider fundamental algorithmic number theoretic problems and their relation to a class of block structured Integer Linear Programs (ILPs) called $2$-stage stochastic. A $2$-stage stochastic ILP is an integer program of the form $\min {cT x \mid \mathcal{A} x = b, \ell \leq x \leq u, x \in \mathbb{Z}{r + ns} }$ where the constraint matrix $\mathcal{A} \in \mathbb{Z}{nt \times r +ns}$ consists of $n$ matrices $A_i \in \mathbb{Z}{t \times r}$ on the vertical line and $n$ matrices $B_i \in \mathbb{Z}{t \times s}$ on the diagonal line aside. First, we show a stronger hardness result for a number theoretic problem called Quadratic Congruences where the objective is to compute a number $z \leq \gamma$ satisfying $z2 \equiv \alpha \bmod \beta$ for given $\alpha, \beta, \gamma \in \mathbb{Z}$. This problem was proven to be NP-hard already in 1978 by Manders and Adleman. However, this hardness only applies for instances where the prime factorization of $\beta$ admits large multiplicities of each prime number. We circumvent this necessity proving that the problem remains NP-hard, even if each prime number only occurs constantly often. Then, using this new hardness result for the Quadratic Congruences problem, we prove a lower bound of $2{2{\delta(s+t)}} |I|{O(1)}$ for some $\delta > 0$ for the running time of any algorithm solving $2$-stage stochastic ILPs assuming the Exponential Time Hypothesis (ETH). Here, $|I|$ is the encoding length of the instance. This result even holds if $r$, $||b||{\infty}$, $||c||{\infty}, ||\ell||_{\infty}$ and the largest absolute value $\Delta$ in the constraint matrix $\mathcal{A}$ are constant. This shows that the state-of-the-art algorithms are nearly tight. Further, it proves the suspicion that these ILPs are indeed harder to solve than the closely related $n$-fold ILPs where the contraint matrix is the transpose of $\mathcal A$.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.