Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Alternating minimization algorithms for graph regularized tensor completion (2008.12876v2)

Published 28 Aug 2020 in math.NA, cs.LG, cs.NA, and math.OC

Abstract: We consider a Canonical Polyadic (CP) decomposition approach to low-rank tensor completion (LRTC) by incorporating external pairwise similarity relations through graph Laplacian regularization on the CP factor matrices. The usage of graph regularization entails benefits in the learning accuracy of LRTC, but at the same time, induces coupling graph Laplacian terms that hinder the optimization of the tensor completion model. In order to solve graph-regularized LRTC, we propose efficient alternating minimization algorithms by leveraging the block structure of the underlying CP decomposition-based model. For the subproblems of alternating minimization, a linear conjugate gradient subroutine is specifically adapted to graph-regularized LRTC. Alternatively, we circumvent the complicating coupling effects of graph Laplacian terms by using an alternating directions method of multipliers. Based on the Kurdyka-{\L}ojasiewicz property, we show that the sequence generated by the proposed algorithms globally converges to a critical point of the objective function. Moreover, the complexity and convergence rate are also derived. In addition, numerical experiments including synthetic data and real data show that the graph regularized tensor completion model has improved recovery results compared to those without graph regularization, and that the proposed algorithms achieve gains in time efficiency over existing algorithms.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.