Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Person-in-Context Synthesiswith Compositional Structural Space (2008.12679v1)

Published 28 Aug 2020 in cs.CV and cs.LG

Abstract: Despite significant progress, controlled generation of complex images with interacting people remains difficult. Existing layout generation methods fall short of synthesizing realistic person instances; while pose-guided generation approaches focus on a single person and assume simple or known backgrounds. To tackle these limitations, we propose a new problem, \textbf{Persons in Context Synthesis}, which aims to synthesize diverse person instance(s) in consistent contexts, with user control over both. The context is specified by the bounding box object layout which lacks shape information, while pose of the person(s) by keypoints which are sparsely annotated. To handle the stark difference in input structures, we proposed two separate neural branches to attentively composite the respective (context/person) inputs into shared ``compositional structural space'', which encodes shape, location and appearance information for both context and person structures in a disentangled manner. This structural space is then decoded to the image space using multi-level feature modulation strategy, and learned in a self supervised manner from image collections and their corresponding inputs. Extensive experiments on two large-scale datasets (COCO-Stuff \cite{caesar2018cvpr} and Visual Genome \cite{krishna2017visual}) demonstrate that our framework outperforms state-of-the-art methods w.r.t. synthesis quality.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.