Papers
Topics
Authors
Recent
2000 character limit reached

Towards Building A Facial Identification System Using Quantum Machine Learning Techniques (2008.12616v1)

Published 26 Aug 2020 in quant-ph and cs.ET

Abstract: In the modern world, facial identification is an extremely important task in which many applications rely on high performing algorithms to detect faces efficiently. Whilst classical methods of SVM and k-NN commonly used may perform to a good standard, they are often highly complex and take substantial computing power to run effectively. With the rise of quantum computing boasting large speedups without sacrificing large amounts of much needed performance, we aim to explore the benefits that quantum machine learning techniques can bring when specifically targeted towards facial identification applications. In the following work, we explore a quantum scheme which uses fidelity estimations of feature vectors in order to determine the classification result. Here, we are able to achieve exponential speedups by utilizing the principles of quantum computing without sacrificing large proportions of performance in terms of classification accuracy. We also propose limitations of the work and where some future efforts should be placed in order to produce robust quantum algorithms that can perform to the same standard as classical methods whilst utilizing the speedup performance gains.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.