Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Topological Similarity Measure between Multi-Field Data using Multi-Resolution Reeb Spaces (2008.12567v1)

Published 28 Aug 2020 in cs.CG

Abstract: Searching topological similarity between a pair of shapes or data is an important problem in data analysis and visualization. The problem of computing similarity measures using scalar topology has been studied extensively and proven useful in shape and data matching. Even though multi-field (or multivariate) topology-based techniques reveal richer topological features, research on computing similarity measures using multi-field topology is still in its infancy. In the current paper, we propose a novel similarity measure between two piecewise-linear multi-fields based on their multi-resolution Reeb spaces - a newly developed data-structure that captures the topology of a multi-field. Overall, our method consists of two steps: (i) building a multi-resolution Reeb space corresponding to each of the multi-fields and (ii) proposing a similarity measure for a list of matching pairs (of nodes), obtained by comparing the multi-resolution Reeb spaces. We demonstrate an application of the proposed similarity measure by detecting the nuclear scission point in a time-varying multi-field data from computational physics.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.