Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Investigating Taxi and Uber competition in New York City: Multi-agent modeling by reinforcement-learning (2008.12530v1)

Published 28 Aug 2020 in cs.CY, cs.SY, eess.SY, and physics.soc-ph

Abstract: The taxi business has been overly regulated for many decades. Regulations are supposed to ensure safety and fairness within a controlled competitive environment. By influencing both drivers and riders choices and behaviors, emerging e-hailing services (e.g., Uber and Lyft) have been reshaping the existing competition in the last few years. This study investigates the existing competition between the mainstream hailing services (i.e., Yellow and Green Cabs) and e-hailing services (i.e., Uber) in New York City. Their competition is investigated in terms of market segmentation, emerging demands, and regulations. Data visualization techniques are employed to find existing and new patterns in travel behavior. For this study, we developed a multi-agent model and applied reinforcement learning techniques to imitate drivers behaviors. The model is verified by the patterns recognized in our data visualization results. The model is then used to evaluate multiple new regulations and competition scenarios. Results of our study illustrate that e-hailers dominate low-travel-density areas (e.g., residential areas), and that e-hailers quickly identify and respond to change in travel demand. This leads to diminishing market size for hailers. Furthermore, our results confirm the indirect impact of Green Cabs regulations on the existing competition. This investigation, along with our proposed scenarios, can aid policymakers and authorities in designing policies that could effectively address demand while assuring a healthy competition for the hailing and e-haling sectors. Keywords: taxi; Uber, policy; E-hailing; multi-agent simulation; reinforcement learning;

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.