Distributed-memory $\mathcal{H}$-matrix Algebra I: Data Distribution and Matrix-vector Multiplication (2008.12441v2)
Abstract: We introduce a data distribution scheme for $\mathcal{H}$-matrices and a distributed-memory algorithm for $\mathcal{H}$-matrix-vector multiplication. Our data distribution scheme avoids an expensive $\Omega(P2)$ scheduling procedure used in previous work, where $P$ is the number of processes, while data balancing is well-preserved. Based on the data distribution, our distributed-memory algorithm evenly distributes all computations among $P$ processes and adopts a novel tree-communication algorithm to reduce the latency cost. The overall complexity of our algorithm is $O\Big(\frac{N \log N}{P} + \alpha \log P + \beta \log2 P \Big)$ for $\mathcal{H}$-matrices under weak admissibility condition, where $N$ is the matrix size, $\alpha$ denotes the latency, and $\beta$ denotes the inverse bandwidth. Numerically, our algorithm is applied to address both two- and three-dimensional problems of various sizes among various numbers of processes. On thousands of processes, good parallel efficiency is still observed.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.