Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Forecasting with Multiple Seasonality (2008.12340v1)

Published 27 Aug 2020 in cs.LG and stat.ML

Abstract: An emerging number of modern applications involve forecasting time series data that exhibit both short-time dynamics and long-time seasonality. Specifically, time series with multiple seasonality is a difficult task with comparatively fewer discussions. In this paper, we propose a two-stage method for time series with multiple seasonality, which does not require pre-determined seasonality periods. In the first stage, we generalize the classical seasonal autoregressive moving average (ARMA) model in multiple seasonality regime. In the second stage, we utilize an appropriate criterion for lag order selection. Simulation and empirical studies show the excellent predictive performance of our method, especially compared to a recently popular `Facebook Prophet' model for time series.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)