Inf-sup stability implies quasi-orthogonality (2008.12198v6)
Abstract: We prove new optimality results for adaptive mesh refinement algorithms for non-symmetric, indefinite, and time-dependent problems by proposing a generalization of quasi-orthogonality which follows directly from the inf-sup stability of the underlying problem. This completely removes a central technical difficulty in modern proofs of optimal convergence of adaptive mesh refinement algorithms and leads to simple optimality proofs for the Taylor-Hood discretization of the stationary Stokes problem, a finite-element/boundary-element discretization of an unbounded transmission problem, and an adaptive time-stepping scheme for parabolic equations. The main technical tool are new stability bounds for the LU-factorization of matrices together with a recently established connection between quasi-orthogonality and matrix factorization.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.