Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Mixed Noise Removal with Pareto Prior (2008.11935v1)

Published 27 Aug 2020 in eess.IV and cs.CV

Abstract: Denoising images contaminated by the mixture of additive white Gaussian noise (AWGN) and impulse noise (IN) is an essential but challenging problem. The presence of impulsive disturbances inevitably affects the distribution of noises and thus largely degrades the performance of traditional AWGN denoisers. Existing methods target to compensate the effects of IN by introducing a weighting matrix, which, however, is lack of proper priori and thus hard to be accurately estimated. To address this problem, we exploit the Pareto distribution as the priori of the weighting matrix, based on which an accurate and robust weight estimator is proposed for mixed noise removal. Particularly, a relatively small portion of pixels are assumed to be contaminated with IN, which should have weights with small values and then be penalized out. This phenomenon can be properly described by the Pareto distribution of type 1. Therefore, armed with the Pareto distribution, we formulate the problem of mixed noise removal in the Bayesian framework, where nonlocal self-similarity priori is further exploited by adopting nonlocal low rank approximation. Compared to existing methods, the proposed method can estimate the weighting matrix adaptively, accurately, and robust for different level of noises, thus can boost the denoising performance. Experimental results on widely used image datasets demonstrate the superiority of our proposed method to the state-of-the-arts.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.