Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

SparseRT: Accelerating Unstructured Sparsity on GPUs for Deep Learning Inference (2008.11849v1)

Published 26 Aug 2020 in cs.LG and stat.ML

Abstract: In recent years, there has been a flurry of research in deep neural network pruning and compression. Early approaches prune weights individually. However, it is difficult to take advantage of the resulting unstructured sparsity patterns on modern hardware like GPUs. As a result, pruning strategies which impose sparsity structures in the weights have become more popular. However,these structured pruning approaches typically lead to higher losses in accuracy than unstructured pruning. In this paper, we present SparseRT, a code generator that leverage unstructured sparsity to accelerate sparse linear algebra operations in deep learning inference on GPUs. For 1x1 convolutions and fully connected layers, we demonstrate geometric mean of speedups of 3.4x over the equivalent dense computation at 90% sparsity and 5.4x at 95% sparsity when evaluated on hundreds of test cases in deep learning. For sparse 3x3 convolutions, we show speedups of over 5x on use cases in ResNet-50.

Citations (60)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com