Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Making Neural Networks Interpretable with Attribution: Application to Implicit Signals Prediction (2008.11406v1)

Published 26 Aug 2020 in cs.LG and stat.ML

Abstract: Explaining recommendations enables users to understand whether recommended items are relevant to their needs and has been shown to increase their trust in the system. More generally, if designing explainable machine learning models is key to check the sanity and robustness of a decision process and improve their efficiency, it however remains a challenge for complex architectures, especially deep neural networks that are often deemed "black-box". In this paper, we propose a novel formulation of interpretable deep neural networks for the attribution task. Differently to popular post-hoc methods, our approach is interpretable by design. Using masked weights, hidden features can be deeply attributed, split into several input-restricted sub-networks and trained as a boosted mixture of experts. Experimental results on synthetic data and real-world recommendation tasks demonstrate that our method enables to build models achieving close predictive performances to their non-interpretable counterparts, while providing informative attribution interpretations.

Citations (16)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.