Papers
Topics
Authors
Recent
Search
2000 character limit reached

An Adversarial Attack Defending System for Securing In-Vehicle Networks

Published 25 Aug 2020 in cs.LG and cs.CR | (2008.11278v2)

Abstract: In a modern vehicle, there are over seventy Electronics Control Units (ECUs). For an in-vehicle network, ECUs communicate with each other by following a standard communication protocol, such as Controller Area Network (CAN). However, an attacker can easily access the in-vehicle network to compromise ECUs through a WLAN or Bluetooth. Though there are various deep learning (DL) methods suggested for securing in-vehicle networks, recent studies on adversarial examples have shown that attackers can easily fool DL models. In this research, we further explore adversarial examples in an in-vehicle network. We first discover and implement two adversarial attack models that are harmful to a Long Short Term Memory (LSTM)-based detection model used in the in-vehicle network. Then, we propose an Adversarial Attack Defending System (AADS) for securing an in-vehicle network. Specifically, we focus on brake-related ECUs in an in-vehicle network. Our experimental results demonstrate that adversaries can easily attack the LSTM-based detection model with a success rate of over 98%, and the proposed AADS achieves over 99% accuracy for detecting adversarial attacks.

Citations (13)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.