Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Learning to Learn in a Semi-Supervised Fashion (2008.11203v1)

Published 25 Aug 2020 in cs.CV and cs.LG

Abstract: To address semi-supervised learning from both labeled and unlabeled data, we present a novel meta-learning scheme. We particularly consider that labeled and unlabeled data share disjoint ground truth label sets, which can be seen tasks like in person re-identification or image retrieval. Our learning scheme exploits the idea of leveraging information from labeled to unlabeled data. Instead of fitting the associated class-wise similarity scores as most meta-learning algorithms do, we propose to derive semantics-oriented similarity representations from labeled data, and transfer such representation to unlabeled ones. Thus, our strategy can be viewed as a self-supervised learning scheme, which can be applied to fully supervised learning tasks for improved performance. Our experiments on various tasks and settings confirm the effectiveness of our proposed approach and its superiority over the state-of-the-art methods.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.