Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Quantum statistical learning via Quantum Wasserstein natural gradient (2008.11135v1)

Published 25 Aug 2020 in math-ph, cs.IT, math.IT, math.MP, math.OC, and quant-ph

Abstract: In this article, we introduce a new approach towards the statistical learning problem $\operatorname{argmin}{\rho(\theta) \in \mathcal P{\theta}} W_{Q}2 (\rho_{\star},\rho(\theta))$ to approximate a target quantum state $\rho_{\star}$ by a set of parametrized quantum states $\rho(\theta)$ in a quantum $L2$-Wasserstein metric. We solve this estimation problem by considering Wasserstein natural gradient flows for density operators on finite-dimensional $C*$ algebras. For continuous parametric models of density operators, we pull back the quantum Wasserstein metric such that the parameter space becomes a Riemannian manifold with quantum Wasserstein information matrix. Using a quantum analogue of the Benamou-Brenier formula, we derive a natural gradient flow on the parameter space. We also discuss certain continuous-variable quantum states by studying the transport of the associated Wigner probability distributions.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)