Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

O'Reach: Even Faster Reachability in Large Graphs (2008.10932v2)

Published 25 Aug 2020 in cs.DS

Abstract: One of the most fundamental problems in computer science is the reachability problem: Given a directed graph and two vertices s and t, can s reach t via a path? We revisit existing techniques and combine them with new approaches to support a large portion of reachability queries in constant time using a linear-sized reachability index. Our new algorithm O'Reach can be easily combined with previously developed solutions for the problem or run standalone. In a detailed experimental study, we compare a variety of algorithms with respect to their index-building and query times as well as their memory footprint on a diverse set of instances. Our experiments indicate that the query performance often depends strongly not only on the type of graph, but also on the result, i.e., reachable or unreachable. Furthermore, we show that previous algorithms are significantly sped up when combined with our new approach in almost all scenarios. Surprisingly, due to cache effects, a higher investment in space doesn't necessarily pay off: Reachability queries can often be answered even faster than single memory accesses in a precomputed full reachability matrix.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.