Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Critical Analysis of Patch Similarity Based Image Denoising Algorithms (2008.10824v1)

Published 25 Aug 2020 in cs.CV, cs.GR, and eess.IV

Abstract: Image denoising is a classical signal processing problem that has received significant interest within the image processing community during the past two decades. Most of the algorithms for image denoising has focused on the paradigm of non-local similarity, where image blocks in the neighborhood that are similar, are collected to build a basis for reconstruction. Through rigorous experimentation, this paper reviews multiple aspects of image denoising algorithm development based on non-local similarity. Firstly, the concept of non-local similarity as a foundational quality that exists in natural images has not received adequate attention. Secondly, the image denoising algorithms that are developed are a combination of multiple building blocks, making comparison among them a tedious task. Finally, most of the work surrounding image denoising presents performance results based on Peak-Signal-to-Noise Ratio (PSNR) between a denoised image and a reference image (which is perturbed with Additive White Gaussian Noise). This paper starts with a statistical analysis on non-local similarity and its effectiveness under various noise levels, followed by a theoretical comparison of different state-of-the-art image denoising algorithms. Finally, we argue for a methodological overhaul to incorporate no-reference image quality measures and unprocessed images (raw) during performance evaluation of image denoising algorithms.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.