Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Evaluation of hybrid run-time power models for the ARM big.LITTLE architecture (2008.10604v1)

Published 24 Aug 2020 in cs.AR and cs.DC

Abstract: Heterogeneous processors, formed by binary compatible CPU cores with different microarchitectures, enable energy reductions by better matching processing capabilities and software application requirements. This new hardware platform requires novel techniques to manage power and energy to fully utilize its capabilities, particularly regarding the mapping of workloads to appropriate cores. In this paper we validate relevant published work related to power modelling for heterogeneous systems and propose a new approach for developing run-time power models that uses a hybrid set of physical predictors, performance events and CPU state information. We demonstrate the accuracy of this approach compared with the state-of-the-art and its applicability to energy aware scheduling. Our results are obtained on a commercially available platform built around the Samsung Exynos 5 Octa SoC, which features the ARM big.LITTLE heterogeneous architecture.

Citations (15)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.