Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

FOCAL: A Forgery Localization Framework based on Video Coding Self-Consistency (2008.10454v2)

Published 24 Aug 2020 in cs.CV and eess.IV

Abstract: Forgery operations on video contents are nowadays within the reach of anyone, thanks to the availability of powerful and user-friendly editing software. Integrity verification and authentication of videos represent a major interest in both journalism (e.g., fake news debunking) and legal environments dealing with digital evidence (e.g., a court of law). While several strategies and different forensics traces have been proposed in recent years, latest solutions aim at increasing the accuracy by combining multiple detectors and features. This paper presents a video forgery localization framework that verifies the self-consistency of coding traces between and within video frames, by fusing the information derived from a set of independent feature descriptors. The feature extraction step is carried out by means of an explainable convolutional neural network architecture, specifically designed to look for and classify coding artifacts. The overall framework was validated in two typical forgery scenarios: temporal and spatial splicing. Experimental results show an improvement to the state-of-the-art on temporal splicing localization and also promising performance in the newly tackled case of spatial splicing, on both synthetic and real-world videos.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube