Cross-lingual Semantic Role Labeling with Model Transfer (2008.10284v1)
Abstract: Prior studies show that cross-lingual semantic role labeling (SRL) can be achieved by model transfer under the help of universal features. In this paper, we fill the gap of cross-lingual SRL by proposing an end-to-end SRL model that incorporates a variety of universal features and transfer methods. We study both the bilingual transfer and multi-source transfer, under gold or machine-generated syntactic inputs, pre-trained high-order abstract features, and contextualized multilingual word representations. Experimental results on the Universal Proposition Bank corpus indicate that performances of the cross-lingual SRL can vary by leveraging different cross-lingual features. In addition, whether the features are gold-standard also has an impact on performances. Precisely, we find that gold syntax features are much more crucial for cross-lingual SRL, compared with the automatically-generated ones. Moreover, universal dependency structure features are able to give the best help, and both pre-trained high-order features and contextualized word representations can further bring significant improvements.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.