Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

When Inverse Propensity Scoring does not Work: Affine Corrections for Unbiased Learning to Rank (2008.10242v2)

Published 24 Aug 2020 in cs.IR

Abstract: Besides position bias, which has been well-studied, trust bias is another type of bias prevalent in user interactions with rankings: users are more likely to click incorrectly w.r.t. their preferences on highly ranked items because they trust the ranking system. While previous work has observed this behavior in users, we prove that existing Counterfactual Learning to Rank (CLTR) methods do not remove this bias, including methods specifically designed to mitigate this type of bias. Moreover, we prove that Inverse Propensity Scoring (IPS) is principally unable to correct for trust bias under non-trivial circumstances. Our main contribution is a new estimator based on affine corrections: it both reweights clicks and penalizes items displayed on ranks with high trust bias. Our estimator is the first estimator that is proven to remove the effect of both trust bias and position bias. Furthermore, we show that our estimator is a generalization of the existing CLTR framework: if no trust bias is present, it reduces to the original IPS estimator. Our semi-synthetic experiments indicate that by removing the effect of trust bias in addition to position bias, CLTR can approximate the optimal ranking system even closer than previously possible.

Citations (59)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube