Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

AMRConvNet: AMR-Coded Speech Enhancement Using Convolutional Neural Networks (2008.10233v1)

Published 24 Aug 2020 in eess.AS and cs.SD

Abstract: Speech is converted to digital signals using speech coding for efficient transmission. However, this often lowers the quality and bandwidth of speech. This paper explores the application of convolutional neural networks for Artificial Bandwidth Expansion (ABE) and speech enhancement on coded speech, particularly Adaptive Multi-Rate (AMR) used in 2G cellular phone calls. In this paper, we introduce AMRConvNet: a convolutional neural network that performs ABE and speech enhancement on speech encoded with AMR. The model operates directly on the time-domain for both input and output speech but optimizes using combined time-domain reconstruction loss and frequency-domain perceptual loss. AMRConvNet resulted in an average improvement of 0.425 Mean Opinion Score - Listening Quality Objective (MOS-LQO) points for AMR bitrate of 4.75k, and 0.073 MOS-LQO points for AMR bitrate of 12.2k. AMRConvNet also showed robustness in AMR bitrate inputs. Finally, an ablation test showed that our combined time-domain and frequency-domain loss leads to slightly higher MOS-LQO and faster training convergence than using either loss alone.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
Citations (2)

Summary

We haven't generated a summary for this paper yet.