Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 200 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 44 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Streaming Submodular Matching Meets the Primal-Dual Method (2008.10062v2)

Published 23 Aug 2020 in cs.DS

Abstract: We study streaming submodular maximization subject to matching/$b$-matching constraints (MSM/MSbM), and present improved upper and lower bounds for these problems. On the upper bounds front, we give primal-dual algorithms achieving the following approximation ratios. $\bullet$ $3+2\sqrt{2}\approx 5.828$ for monotone MSM, improving the previous best ratio of $7.75$. $\bullet$ $4+3\sqrt{2}\approx 7.464$ for non-monotone MSM, improving the previous best ratio of $9.899$. $\bullet$ $3+\epsilon$ for maximum weight b-matching, improving the previous best ratio of $4+\epsilon$. On the lower bounds front, we improve on the previous best lower bound of $\frac{e}{e-1}\approx 1.582$ for MSM, and show ETH-based lower bounds of $\approx 1.914$ for polytime monotone MSM streaming algorithms. Our most substantial contributions are our algorithmic techniques. We show that the (randomized) primal-dual method, which originated in the study of maximum weight matching (MWM), is also useful in the context of MSM. To our knowledge, this is the first use of primal-dual based analysis for streaming submodular optimization. We also show how to reinterpret previous algorithms for MSM in our framework; hence, we hope our work is a step towards unifying old and new techniques for streaming submodular maximization, and that it paves the way for further new results.

Citations (26)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.