Papers
Topics
Authors
Recent
2000 character limit reached

Few-Shot Image Classification via Contrastive Self-Supervised Learning (2008.09942v1)

Published 23 Aug 2020 in cs.CV and cs.AI

Abstract: Most previous few-shot learning algorithms are based on meta-training with fake few-shot tasks as training samples, where large labeled base classes are required. The trained model is also limited by the type of tasks. In this paper we propose a new paradigm of unsupervised few-shot learning to repair the deficiencies. We solve the few-shot tasks in two phases: meta-training a transferable feature extractor via contrastive self-supervised learning and training a classifier using graph aggregation, self-distillation and manifold augmentation. Once meta-trained, the model can be used in any type of tasks with a task-dependent classifier training. Our method achieves state of-the-art performance in a variety of established few-shot tasks on the standard few-shot visual classification datasets, with an 8- 28% increase compared to the available unsupervised few-shot learning methods.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.