Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Semi-Supervised Data Programming with Subset Selection (2008.09887v3)

Published 22 Aug 2020 in cs.LG and stat.ML

Abstract: The paradigm of data programming, which uses weak supervision in the form of rules/labelling functions, and semi-supervised learning, which augments small amounts of labelled data with a large unlabelled dataset, have shown great promise in several text classification scenarios. In this work, we argue that by not using any labelled data, data programming based approaches can yield sub-optimal performances, particularly when the labelling functions are noisy. The first contribution of this work is an introduction of a framework, \model which is a semi-supervised data programming paradigm that learns a \emph{joint model} that effectively uses the rules/labelling functions along with semi-supervised loss functions on the feature space. Next, we also study \modelss which additionally does subset selection on top of the joint semi-supervised data programming objective and \emph{selects} a set of examples that can be used as the labelled set by \model. The goal of \modelss is to ensure that the labelled data can \emph{complement} the labelling functions, thereby benefiting from both data-programming as well as appropriately selected data for human labelling. We demonstrate that by effectively combining semi-supervision, data-programming, and subset selection paradigms, we significantly outperform the current state-of-the-art on seven publicly available datasets. \footnote{The source code is available at \url{https://github.com/ayushbits/Semi-Supervised-LFs-Subset-Selection}}

Citations (20)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.