Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Improved Weighted Additive Spanners (2008.09877v2)

Published 22 Aug 2020 in cs.DS

Abstract: Graph spanners and emulators are sparse structures that approximately preserve distances of the original graph. While there has been an extensive amount of work on additive spanners, so far little attention was given to weighted graphs. Only very recently [ABSKS20] extended the classical +2 (respectively, +4) spanners for unweighted graphs of size $O(n{3/2})$ (resp., $O(n{7/5})$) to the weighted setting, where the additive error is $+2W$ (resp., $+4W$). This means that for every pair $u,v$, the additive stretch is at most $+2W_{u,v}$, where $W_{u,v}$ is the maximal edge weight on the shortest $u-v$ path. In addition, [ABSKS20] showed an algorithm yielding a $+8W_{max}$ spanner of size $O(n{4/3})$, here $W_{max}$ is the maximum edge weight in the entire graph. In this work we improve the latter result by devising a simple deterministic algorithm for a $+(6+\varepsilon)W$ spanner for weighted graphs with size $O(n{4/3})$ (for any constant $\varepsilon>0$), thus nearly matching the classical +6 spanner of size $O(n{4/3})$ for unweighted graphs. Furthermore, we show a $+(2+\varepsilon)W$ subsetwise spanner of size $O(n\cdot\sqrt{|S|})$, improving the $+4W_{max}$ result of ABSKS20. We also show a simple randomized algorithm for a $+4W$ emulator of size $\tilde{O}(n{4/3})$. In addition, we show that our technique is applicable for very sparse additive spanners, that have linear size. For weighted graphs, we use a variant of our simple deterministic algorithm that yields a linear size $+\tilde{O}(\sqrt{n}\cdot W)$ spanner, and we also obtain a tradeoff between size and stretch. Finally, generalizing the technique of [DHZ00] for unweighted graphs, we devise an efficient randomized algorithm producing a $+2W$ spanner for weighted graphs of size $\tilde{O}(n{3/2})$ in $\tilde{O}(n2)$ time.

Citations (17)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.