Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

On the Size of Minimal Separators for Treedepth Decomposition (2008.09822v2)

Published 22 Aug 2020 in cs.DS and cs.DM

Abstract: Treedepth decomposition has several practical applications and can be used to speed up many parameterized algorithms. There are several works aiming to design a scalable algorithm to compute exact treedepth decompositions. Those include works based on a set of all minimal separators. In those algorithms, although a number of minimal separators are enumerated, the minimal separators that are used for an optimal solution are empirically very small. Therefore, analyzing the upper bound on the size of minimal separators is an important problem because it has the potential to significantly reduce the computation time. A minimal separator $S$ is called an optimal top separator if $td(G) = |S| + td(G \backslash S)$, where $td(G)$ denotes the treedepth of $G$. Then, we have two theoretical results on the size of optimal top separators. (1) For any $G$, there is an optimal top separator $S$ such that $|S| \le 2tw(G)$, where $tw(G)$ is the treewidth of $G$. (2) For any $c < 2$, there exists a graph $G$ such that any optimal top separator $S$ of $G$ have $|S| > c \cdot tw(G)$, i.e., the first result gives a tight bound on the size of an optimal top separator.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.