Training Sparse Neural Networks using Compressed Sensing (2008.09661v2)
Abstract: Pruning the weights of neural networks is an effective and widely-used technique for reducing model size and inference complexity. We develop and test a novel method based on compressed sensing which combines the pruning and training into a single step. Specifically, we utilize an adaptively weighted $\ell1$ penalty on the weights during training, which we combine with a generalization of the regularized dual averaging (RDA) algorithm in order to train sparse neural networks. The adaptive weighting we introduce corresponds to a novel regularizer based on the logarithm of the absolute value of the weights. We perform a series of ablation studies demonstrating the improvement provided by the adaptive weighting and generalized RDA algorithm. Furthermore, numerical experiments on the CIFAR-10, CIFAR-100, and ImageNet datasets demonstrate that our method 1) trains sparser, more accurate networks than existing state-of-the-art methods; 2) can be used to train sparse networks from scratch, i.e. from a random initialization, as opposed to initializing with a well-trained base model; 3) acts as an effective regularizer, improving generalization accuracy.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.