Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

GA-MSSR: Genetic Algorithm Maximizing Sharpe and Sterling Ratio Method for RoboTrading (2008.09471v1)

Published 16 Aug 2020 in q-fin.ST, cs.CE, and cs.CV

Abstract: Foreign exchange is the largest financial market in the world, and it is also one of the most volatile markets. Technical analysis plays an important role in the forex market and trading algorithms are designed utilizing machine learning techniques. Most literature used historical price information and technical indicators for training. However, the noisy nature of the market affects the consistency and profitability of the algorithms. To address this problem, we designed trading rule features that are derived from technical indicators and trading rules. The parameters of technical indicators are optimized to maximize trading performance. We also proposed a novel cost function that computes the risk-adjusted return, Sharpe and Sterling Ratio (SSR), in an effort to reduce the variance and the magnitude of drawdowns. An automatic robotic trading (RoboTrading) strategy is designed with the proposed Genetic Algorithm Maximizing Sharpe and Sterling Ratio model (GA-MSSR) model. The experiment was conducted on intraday data of 6 major currency pairs from 2018 to 2019. The results consistently showed significant positive returns and the performance of the trading system is superior using the optimized rule-based features. The highest return obtained was 320% annually using 5-minute AUDUSD currency pair. Besides, the proposed model achieves the best performance on risk factors, including maximum drawdowns and variance in return, comparing to benchmark models. The code can be accessed at https://github.com/zzzac/rule-based-forextrading-system

Citations (18)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.