Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Variational Approach to Unsupervised Sentiment Analysis (2008.09394v1)

Published 21 Aug 2020 in cs.CL

Abstract: In this paper, we propose a variational approach to unsupervised sentiment analysis. Instead of using ground truth provided by domain experts, we use target-opinion word pairs as a supervision signal. For example, in a document snippet "the room is big," (room, big) is a target-opinion word pair. These word pairs can be extracted by using dependency parsers and simple rules. Our objective function is to predict an opinion word given a target word while our ultimate goal is to learn a sentiment classifier. By introducing a latent variable, i.e., the sentiment polarity, to the objective function, we can inject the sentiment classifier to the objective function via the evidence lower bound. We can learn a sentiment classifier by optimizing the lower bound. We also impose sophisticated constraints on opinion words as regularization which encourages that if two documents have similar (dissimilar) opinion words, the sentiment classifiers should produce similar (different) probability distribution. We apply our method to sentiment analysis on customer reviews and clinical narratives. The experiment results show our method can outperform unsupervised baselines in sentiment analysis task on both domains, and our method obtains comparable results to the supervised method with hundreds of labels per aspect in customer reviews domain, and obtains comparable results to supervised methods in clinical narratives domain.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.