Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

An Edge-powered Approach to Assisted Driving (2008.09336v1)

Published 21 Aug 2020 in cs.NI

Abstract: Automotive services for connected vehicles are one of the main fields of application for new-generation mobile networks as well as for the edge computing paradigm. In this paper, we investigate a system architecture that integrates the distributed vehicular network with the network edge, with the aim to optimize the vehicle travel times. We then present a queue-based system model that permits the optimization of the vehicle flows, and we show its applicability to two relevant services, namely, lane change/merge (representative of cooperative assisted driving) and navigation. Furthermore, we introduce an efficient algorithm called Bottleneck Hunting (BH), able to formulate high-quality flow policies in linear time. We assess the performance of the proposed system architecture and of BH through a comprehensive and realistic simulation framework, combining ns-3 and SUMO. The results, derived under real-world scenarios, show that our solution provides much shorter travel times than when decisions are made by individual vehicles.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.