Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Greedy Approaches to Online Stochastic Matching (2008.09260v2)

Published 21 Aug 2020 in cs.DS and math.CO

Abstract: Within the context of stochastic probing with commitment, we consider the online stochastic matching problem; that is, the one-sided online bipartite matching problem where edges adjacent to an online node must be probed to determine if they exist based on edge probabilities that become known when an online vertex arrives. If a probed edge exists, it must be used in the matching (if possible). We consider the competitiveness of online algorithms in both the adversarial order model (AOM) and the random order model (ROM). More specifically, we consider a bipartite stochastic graph $G = (U,V,E)$ where $U$ is the set of offline vertices, $V$ is the set of online vertices and $G$ has edge probabilities $(p_{e}){e \in E}$ and edge weights $(w{e}){e \in E}$. Additionally, $G$ has probing constraints $(\scr{C}{v})_{v \in V}$, where $\scr{C}_v$ indicates which sequences of edges adjacent to an online vertex $v$ can be probed. We assume that $U$ is known in advance, and that $\scr{C}_v$, together with the edge probabilities and weights adjacent to an online vertex are only revealed when the online vertex arrives. This model generalizes the various settings of the classical bipartite matching problem, and so our main contribution is in making progress towards understanding which classical results extend to the stochastic probing model.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.