Papers
Topics
Authors
Recent
2000 character limit reached

Logic-Induced Bisimulations (2008.09238v1)

Published 21 Aug 2020 in cs.LO and math.LO

Abstract: We define a new logic-induced notion of bisimulation (called $\rho$-bisimulation) for coalgebraic modal logics given by a logical connection, and investigate its properties. We show that it is structural in the sense that it is defined only in terms of the coalgebra structure and the one-step modal semantics and, moreover, can be characterised by a form of relation lifting. Furthermore we compare $\rho$-bisimulations to several well-known equivalence notions, and we prove that the collection of bisimulations between two models often forms a complete lattice. The main technical result is a Hennessy-Milner type theorem which states that, under certain conditions, logical equivalence implies $\rho$-bisimilarity. In particular, the latter does \emph{not} rely on a duality between functors $\mathsf{T}$ (the type of the coalgebras) and $\mathsf{L}$ (which gives the logic), nor on properties of the logical connection $\rho$.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.