Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Solving Problems on Generalized Convex Graphs via Mim-Width (2008.09004v4)

Published 20 Aug 2020 in cs.DS, cs.CC, cs.DM, and math.CO

Abstract: A bipartite graph $G=(A,B,E)$ is ${\cal H}$-convex, for some family of graphs ${\cal H}$, if there exists a graph $H\in {\cal H}$ with $V(H)=A$ such that the set of neighbours in $A$ of each $b\in B$ induces a connected subgraph of $H$. Many $\mathsf{NP}$-complete problems, including problems such as Dominating Set, Feedback Vertex Set, Induced Matching and List $k$-Colouring, become polynomial-time solvable for ${\mathcal H}$-convex graphs when ${\mathcal H}$ is the set of paths. In this case, the class of ${\mathcal H}$-convex graphs is known as the class of convex graphs. The underlying reason is that the class of convex graphs has bounded mim-width. We extend the latter result to families of ${\mathcal H}$-convex graphs where (i) ${\mathcal H}$ is the set of cycles, or (ii) ${\mathcal H}$ is the set of trees with bounded maximum degree and a bounded number of vertices of degree at least $3$. As a consequence, we can re-prove and strengthen a large number of results on generalized convex graphs known in the literature. To complement result (ii), we show that the mim-width of ${\mathcal H}$-convex graphs is unbounded if ${\mathcal H}$ is the set of trees with arbitrarily large maximum degree or an arbitrarily large number of vertices of degree at least $3$. In this way we are able to determine complexity dichotomies for the aforementioned graph problems. Afterwards we perform a more refined width-parameter analysis, which shows even more clearly which width parameters are bounded for classes of ${\cal H}$-convex graphs.

Citations (13)

Summary

We haven't generated a summary for this paper yet.