Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Component-by-component digit-by-digit construction of good polynomial lattice rules in weighted Walsh spaces (2008.08966v1)

Published 20 Aug 2020 in math.NA and cs.NA

Abstract: We consider the efficient construction of polynomial lattice rules, which are special cases of so-called quasi-Monte Carlo (QMC) rules. These are of particular interest for the approximate computation of multivariate integrals where the dimension $d$ may be in the hundreds or thousands. We study a construction method that assembles the generating vector, which is in this case a vector of polynomials over a finite field, of the polynomial lattice rule in a digit-by-digit (or, equivalently, coefficient-by-coefficient) fashion. As we will show, the integration error of the corresponding QMC rules achieves excellent convergence order, and, under suitable conditions, we can vanquish the curse of dimensionality by considering function spaces equipped with coordinate weights. The construction algorithm is based on a quality measure that is independent of the underlying smoothness of the function space and can be implemented in a fast manner (without the use of fast Fourier transformations). Furthermore, we illustrate our findings with extensive numerical results.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.