Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Deep Prediction Network for Understanding Advertiser Intent and Satisfaction (2008.08931v1)

Published 20 Aug 2020 in cs.SI, cs.LG, and stat.ML

Abstract: For e-commerce platforms such as Taobao and Amazon, advertisers play an important role in the entire digital ecosystem: their behaviors explicitly influence users' browsing and shopping experience; more importantly, advertiser's expenditure on advertising constitutes a primary source of platform revenue. Therefore, providing better services for advertisers is essential for the long-term prosperity for e-commerce platforms. To achieve this goal, the ad platform needs to have an in-depth understanding of advertisers in terms of both their marketing intents and satisfaction over the advertising performance, based on which further optimization could be carried out to service the advertisers in the correct direction. In this paper, we propose a novel Deep Satisfaction Prediction Network (DSPN), which models advertiser intent and satisfaction simultaneously. It employs a two-stage network structure where advertiser intent vector and satisfaction are jointly learned by considering the features of advertiser's action information and advertising performance indicators. Experiments on an Alibaba advertisement dataset and online evaluations show that our proposed DSPN outperforms state-of-the-art baselines and has stable performance in terms of AUC in the online environment. Further analyses show that DSPN not only predicts advertisers' satisfaction accurately but also learns an explainable advertiser intent, revealing the opportunities to optimize the advertising performance further.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.