Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 168 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Towards a Decomposable Metric for Explainable Evaluation of Text Generation from AMR (2008.08896v3)

Published 20 Aug 2020 in cs.CL

Abstract: Systems that generate natural language text from abstract meaning representations such as AMR are typically evaluated using automatic surface matching metrics that compare the generated texts to reference texts from which the input meaning representations were constructed. We show that besides well-known issues from which such metrics suffer, an additional problem arises when applying these metrics for AMR-to-text evaluation, since an abstract meaning representation allows for numerous surface realizations. In this work we aim to alleviate these issues by proposing $\mathcal{M}\mathcal{F}\beta$, a decomposable metric that builds on two pillars. The first is the principle of meaning preservation $\mathcal{M}$: it measures to what extent a given AMR can be reconstructed from the generated sentence using SOTA AMR parsers and applying (fine-grained) AMR evaluation metrics to measure the distance between the original and the reconstructed AMR. The second pillar builds on a principle of (grammatical) form $\mathcal{F}$ that measures the linguistic quality of the generated text, which we implement using SOTA LLMs. In two extensive pilot studies we show that fulfiLLMent of both principles offers benefits for AMR-to-text evaluation, including explainability of scores. Since $\mathcal{M}\mathcal{F}\beta$ does not necessarily rely on gold AMRs, it may extend to other text generation tasks.

Citations (35)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.