Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

High-Performance Simultaneous Multiprocessing for Heterogeneous System-on-Chip (2008.08883v1)

Published 20 Aug 2020 in cs.DC, cs.AR, and cs.PF

Abstract: This paper presents a methodology for simultaneous heterogeneous computing, named ENEAC, where a quad core ARM Cortex-A53 CPU works in tandem with a preprogrammed on-board FPGA accelerator. A heterogeneous scheduler distributes the tasks optimally among all the resources and all compute units run asynchronously, which allows for improved performance for irregular workloads. ENEAC achieves up to 17\% performance improvement \ignore{and 14\% energy usage reduction,} when using all platform resources compared to just using the FPGA accelerators and up to 865\% performance increase \ignore{and up to 89\% energy usage decrease} when using just the CPU. The workflow uses existing commercial tools and C/C++ as a single programming language for both accelerator design and CPU programming for improved productivity and ease of verification.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.