Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Simple Analysis of Johnson-Lindenstrauss Transform under Neuroscience Constraints (2008.08857v1)

Published 20 Aug 2020 in math.ST, cs.LG, stat.AP, and stat.TH

Abstract: The paper re-analyzes a version of the celebrated Johnson-Lindenstrauss Lemma, in which matrices are subjected to constraints that naturally emerge from neuroscience applications: a) sparsity and b) sign-consistency. This particular variant was studied first by Allen-Zhu, Gelashvili, Micali, Shavit and more recently by Jagadeesan (RANDOM'19). The contribution of this work is a novel proof, which in contrast to previous works a) uses the modern probability toolkit, particularly basics of sub-gaussian and sub-gamma estimates b) is self-contained, with no dependencies on subtle third-party results c) offers explicit constants. At the heart of our proof is a novel variant of Hanson-Wright Lemma (on concentration of quadratic forms). Of independent interest are also auxiliary facts on sub-gaussian random variables.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)