Papers
Topics
Authors
Recent
2000 character limit reached

An Experimental Study of Deep Neural Network Models for Vietnamese Multiple-Choice Reading Comprehension (2008.08810v4)

Published 20 Aug 2020 in cs.CL

Abstract: Machine reading comprehension (MRC) is a challenging task in natural language processing that makes computers understanding natural language texts and answer questions based on those texts. There are many techniques for solving this problems, and word representation is a very important technique that impact most to the accuracy of machine reading comprehension problem in the popular languages like English and Chinese. However, few studies on MRC have been conducted in low-resource languages such as Vietnamese. In this paper, we conduct several experiments on neural network-based model to understand the impact of word representation to the Vietnamese multiple-choice machine reading comprehension. Our experiments include using the Co-match model on six different Vietnamese word embeddings and the BERT model for multiple-choice reading comprehension. On the ViMMRC corpus, the accuracy of BERT model is 61.28% on test set.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.