Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Existence of EFX for Two Additive Valuations (2008.08798v4)

Published 20 Aug 2020 in cs.GT

Abstract: Fair division of indivisible items is a well-studied topic in Economics and Computer Science. The objective is to allocate items to agents in a fair manner, where each agent has a valuation for each subset of items. Envy-freeness is one of the most widely studied notions of fairness. Since complete envy-free allocations do not always exist when items are indivisible, several relaxations have been considered. Among them, possibly the most compelling one is envy-freeness up to any item (EFX), where no agent envies another agent after the removal of any single item from the other agent's bundle. However, despite significant efforts by many researchers for several years, it is known that a complete EFX allocation always exists only in limited cases. In this paper, we show that a complete EFX allocation always exists when each agent is of one of two given types, where agents of the same type have identical additive valuations. This is the first such existence result for non-identical valuations when there are any number of agents and items and no limit on the number of distinct values an agent can have for individual items. We give a constructive proof, in which we iteratively obtain a Pareto dominating (partial) EFX allocation from an existing partial EFX allocation.

Citations (17)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets