Papers
Topics
Authors
Recent
2000 character limit reached

Asymptotics of Wide Convolutional Neural Networks (2008.08675v1)

Published 19 Aug 2020 in cs.LG, hep-th, and stat.ML

Abstract: Wide neural networks have proven to be a rich class of architectures for both theory and practice. Motivated by the observation that finite width convolutional networks appear to outperform infinite width networks, we study scaling laws for wide CNNs and networks with skip connections. Following the approach of (Dyer & Gur-Ari, 2019), we present a simple diagrammatic recipe to derive the asymptotic width dependence for many quantities of interest. These scaling relationships provide a solvable description for the training dynamics of wide convolutional networks. We test these relations across a broad range of architectures. In particular, we find that the difference in performance between finite and infinite width models vanishes at a definite rate with respect to model width. Nonetheless, this relation is consistent with finite width models generalizing either better or worse than their infinite width counterparts, and we provide examples where the relative performance depends on the optimization details.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.