Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Instance-Aware Graph Convolutional Network for Multi-Label Classification (2008.08407v1)

Published 19 Aug 2020 in cs.CV

Abstract: Graph convolutional neural network (GCN) has effectively boosted the multi-label image recognition task by introducing label dependencies based on statistical label co-occurrence of data. However, in previous methods, label correlation is computed based on statistical information of data and therefore the same for all samples, and this makes graph inference on labels insufficient to handle huge variations among numerous image instances. In this paper, we propose an instance-aware graph convolutional neural network (IA-GCN) framework for multi-label classification. As a whole, two fused branches of sub-networks are involved in the framework: a global branch modeling the whole image and a region-based branch exploring dependencies among regions of interests (ROIs). For label diffusion of instance-awareness in graph convolution, rather than using the statistical label correlation alone, an image-dependent label correlation matrix (LCM), fusing both the statistical LCM and an individual one of each image instance, is constructed for graph inference on labels to inject adaptive information of label-awareness into the learned features of the model. Specifically, the individual LCM of each image is obtained by mining the label dependencies based on the scores of labels about detected ROIs. In this process, considering the contribution differences of ROIs to multi-label classification, variational inference is introduced to learn adaptive scaling factors for those ROIs by considering their complex distribution. Finally, extensive experiments on MS-COCO and VOC datasets show that our proposed approach outperforms existing state-of-the-art methods.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.