Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Compute, Time and Energy Characterization of Encoder-Decoder Networks with Automatic Mixed Precision Training (2008.08062v1)

Published 18 Aug 2020 in cs.DC and cs.LG

Abstract: Deep neural networks have shown great success in many diverse fields. The training of these networks can take significant amounts of time, compute and energy. As datasets get larger and models become more complex, the exploration of model architectures becomes prohibitive. In this paper we examine the compute, energy and time costs of training a UNet based deep neural network for the problem of predicting short term weather forecasts (called precipitation Nowcasting). By leveraging a combination of data distributed and mixed-precision training, we explore the design space for this problem. We also show that larger models with better performance come at a potentially incremental cost if appropriate optimizations are used. We show that it is possible to achieve a significant improvement in training time by leveraging mixed-precision training without sacrificing model performance. Additionally, we find that a 1549% increase in the number of trainable parameters for a network comes at a relatively smaller 63.22% increase in energy usage for a UNet with 4 encoding layers.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.